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The bending vibrations of linear, quasilinear, and bent molecules are qualitatively different 
phenomena. Each of these cases has been fully described by quantum mechanical formulations 
in the last half century, but important two-dimensional aspects of all three cases as well as the 
relationship between the three types of bending behavior remain difficult to visualize. Simple 
two-dimensional figures can help to provide an introduction to basic spatial and mathematical 
aspects of the bending problem. 

1. I n t r o d u c t i o n  

We have found that  chemists, physicists and mathematicians frequently have 
conceptual difficulties when first confronted with the subject of the dynamics of  the 
bending of  tr iatomic molecules. The present t reatment is the result of our efforts 
to deal with the hidden assumptions and frequent misconceptions associated with 
this apparently simple problem; a subject in molecular physics which is, in princi- 
ple, mathematically solved. 

In the bending vibration of  a tr iatomic molecule, the balance of contributions 
to the electronic energy may define a potential energy surface (PES) for a given elec- 
tronic state in which the potential min imum describes a linear configuration (e.g., 
HCN,  ground state) or a bent configuration (e.g., HCN,  1A" states). Quan tum 
mechanical methods for calculating PES [1], energy levels and eigenfunctions [2] 
over the full range between these limiting cases have been available for some years 
with varying degrees of  rigorousness [3-10]. The present contribution seeks to 
emphasize, with a graphical representation of  the eigenfunctions, some of  the prop- 
erties of these wave functions, and the eigenstates they describe, over the full range 
of  potential surfaces of t r ia tomic molecules. 
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Let us look first briefly at the properties of the PES. For a molecule in the linear 
configuration, viewed in the space defined by a Cartesian molecule-fixed coordi- 
nate system, of which one axis coincides with the linear equilibrium configuration, 
all directions of a possible bending distortion have the same weight. Thus, the 
PES is isotropic in two dimensions (2D). If the equilibrium position is not the linear 
configuration, there is a potential hump, or a barrier, at the linear configuration. 
Definitions have been introduced to describe mathematically the range of possible 
molecular PES of polyatomic molecules [3]. In the framework of these definitions, 
a barrier at the linear configuration is classified as "a proper saddle point of the 
PES of index 2," surrounded by a circular minimum [3]. Index 2 means that the Hes- 
sian matrix, the matrix of second partial derivatives with respect to the coordinates 
of the PES, has two negative eigenvalues. This property is seen in applying a nor- 
mal coordinate analysis to a PES derived, for example, from ab initio or semiempi- 
rical molecular orbital calculations. Evaluation of the Hessian matrix at the 
equilibrium configuration of the molecule yields the force constants, but at the sad- 
dle point of index 2 it yields 2 negative force constants, which lead to imaginary nor- 
mal frequencies. 

If the barrier to linearity is very high, we say the molecule is bent. In this case, 
we shift our evaluation of the Hessian matrix to the configuration at the minimum 
of the PES to obtain a physically meaningful vibrational force constant. 

If the barrier height is comparable to the energies of the lowest levels of the bend- 
ing mode, we classify a molecule as quasilinear [4]. This means, among other 
things, that the Hessian matrix at neither the linear configuration nor the config- 
uration of the minimum yields values that can be simply related to the bending 
energy intervals. The story of the study of the anomalous spectra associated with 
triatomic quasilinearity goes back to Thorson and Nakagawa [11 ]. 

For this study, we now choose a coordinate system which allows us to display 
the two dimensions relevant to the bending motion for all of these cases. A mole- 
cule-fixed coordinate system is defined as usual by using the Eckart conditions [12]. 
This allows us to separate off the three translational degrees of freedom and to 
define a reference configuration, relative to which there is no rotation but only 
vibration. Finally we determine the principal axes of inertia of the reference config- 
uration, which are then the molecule-fixed a, b, and c axes. We can then define the 
three Euler angles 0, X, and ~ describing the rotation of this molecule-fixed axis sys- 
tem relative to the space-fixed axes. In the case of a bent reference configuration, 
the third Euler angle, ~, describes the rotation of the molecule about the molecule- 
fixed z or a axis. In the case of a linear reference configuration, this angle is unde- 
fined. It has meaning only for describing the phase of the degenerate bending 
motion, as will be seen below. We will write the Hamiltonian for the three-atom 
molecule in terms of these conventional molecule-fixed axes, but will present the 
graphic material in all cases in the Cartesian coordinate system in which the x axis 
corresponds to ~b = 0. Thus, we show the properties of the system in the x y  plane, 
which is shown in fig. 1. Although this axis system corresponds to the conventional 
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Fig. 1. Coordinates ~ and a employed in the description of linear and nonlinear molecules. Atoms 
are designated by the labels 1 to 3. The x,y coordinates of atom 2 are negative in the given configura- 
tion. z = a is the molecule-t'Lxed axis of least moment of inertia, and the Euler angle ~b describes the 

rotation of the molecular plane 123 around z. a describes the molecular bending in the plane 123. 

molecule-fixed axis system for the linear case, it is only "partially molecule-fixed" 
for the bent case. 

If we choose displacement coordinates relative to the reference configuration, 
for which the potential V is a minimum and transform to normal coordinates Qi, 
then the kinetic energy T has no cross terms between vibrational coordinates, in the 
harmonic approximation, and the reduced mass for each vibrational coordinate is 
a constant. We shall ignore the role of stretching motions. We are concerned only 
with the bending motion described by a displacement in the angle a, which is the 
bond angle supplement of the molecule, shown in fig. 1. If the reference configura- 
tion is linear, then the displacement is equal to the value of a itself. We can thus 
represent any bending of a triatomic molecule and any rotation around the figure 
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axis by the two coordinates (a, ~b). It should be noted, however, that this representa- 
tion is not suitable for the class of triatomic molecules which exhibit internal rota- 
tion, and this class of molecules is not treated here. 

The Hamiltonian for the dynamics of the isolated three-atomic molecule can 
thus be represented schematically in a first approximation as [4] 

H ={Ts + Vs} + {Tb + gb + TR(A)} + {TR(s,c)}, (1) 

ignored studied here ignored 

where the first bracket represents the stretching motion, the central bracket repre- 
sents the bending and rotation motion, described by the two coordinates a and ~b 
shown in fig. 1, and the last term gives the end-over-end rotation. T is the kinetic 
energy and V the potential energy associated with each type of motion. TR(a) and 
Tg(s,c) refer to the kinetic energy of rotation about the a, b and c axes in the bent 
molecule. The first and last brackets (and thus stretch-bend and end-over-end-rota- 
tion-stretch interactions) will be omitted in the following treatment, since only the 
central part of eq. (1) is of interest in this paper ("rigid bender" approximation 
[5]). 

In section 2 we review the conventional treatment of the linear harmonic mole- 
cule, and we consider the 2D aspects of both classical and quantum-mechanical 
perspectives, including in section 2.4 the implications of the definition of the 
volume element in the quantum mechanical description. In section 3 we consider 
anharmonic oscillators, in section 4 quasilinear molecules, and in section 5 bent 
triatomics. Although the limiting case of a bent molecule is more familiar, we will 
treat first the quasilinear molecule which follows logically the discussion of anhar- 
monic linear models. Finally, there follows a brief discussion of extensions to 
more complex PES geometries. 

2. The linear case 

2.1. THE CLASSICAL EQUATIONS OF MOTION 

A bending displacement from the linear configuration, a in fig. 1, can occur in 
any direction of the xy plane. If it is of small amplitude, it can be described by a 
combination of two orthogonal rectilinear displacement coordinates, Qx and Qy. 
The normal coordinate Qx represents a displacement 8xi of each atom fulfilling the 
Eckart conditions. The distortion of the molecule constitutes an oscillator. We 
wish to evaluate the potential and kinetic energies of this oscillator. The potential 
energy in the two displacement coordinates Qx and Qy is an isotropic surface which 
in the harmonic approximation is a paraboloid. The oscillator itself may be repre- 
sented by a particle of reduced mass # moving in the QxQy plane subject to a linear 
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restoring force directed towards the coordinate origin. The equations of motion 
are 

i~Qx=-)~Qx and # Q y = - ) ~ Q y ,  (2) 

where Q is the second derivative with respect to time and ~ is the force constant. 
The energy is given in classical Hamiltonian form by 

where the linear momenta are Pj = OT/OQj, j = x ,y ,  where T is the kinetic 
energy. We set 

27rw = (A/tz) 1/z (4) 

and obtain 

n=yul  (N + ~1 + 2u(~)2(~ + ~ )  . (s) 

The transformation to dimensionless coordinates and linear momenta 

qi = (2=pzo/h)l/2Qi, pi = (l/pzoh)l/2pi (6) 

brings the classical Hamiltonian H to the form 

H =  ½hw{(p2x + p 2 ) +  (q2 x + ~)}  = X + V.  (7) 

2.2. THE QUANTUM MECHANICAL EQUATIONS OF MOTION AND THEIR 
SOLUTIONS 

The Schr6dinger equation is derived by using the relation pj = - i0 /0q)  for the 
linear momenta, giving 

02~u 2E 
- + w ~  + ( ~ + ~ ) v , =  ~ v,, (8) Oqy 

with the wave function ~u(q~,, qy) and eigenvalue E. We can introduce planar polar 
coordinates, a dimensionless bending amplitude r and the Euler angle q~, by writing 
qx = r cos q~ and qy = r sin ~b, where r >i 0 and 0 <~ ~b < 2n. Note that r approximates 

near zero. Equation (8) transforms into 

1 0  2 

With the function ~u(r, ~b) = ~u(r) exp(i/~b) we have the well-known solution which 
allows the separation of the wave functions for bending and angular motion. Since 
exp(i/~b) = cos(/4~) + i sin(/~b), we see that for arbitrary values of I this function is 
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not single-valued for the same point in space ~b = 0 and ~b = 2n. Hence, l has to be 
an integer. Inserting the exp(il~b) solution we can integrate over the variable ~b in eq. 
(9) and obtain 

I ( ~  + l ~ r )  + ( ~ -  ~ -  ~ )  }~,(r) -- O. (10) 

This is the standard form of an isotropic 2D oscillator. The problem is reduced, 
for any given integer value of the quantum number l, to a one-dimensional Schr6- 
dinger equation with an extended potential containing the value of l. The bending 
vibration is thus necessarily coupled to a rotation about the linear axis, which corre- 
lates with the a axis, the principal axis of least moment of inertia of a bent mole- 
cule. V(r) = (hw/2)r 2 is replaced by the "effective" potential 

hw 
Veff(r) = --f (? + 12/?). (11) 

In fig. 3 we illustrate the two parts (rE and lZ/?) of Veff and their combination. 
The dramatic difference in the slopes for r--* 0 comes from the singular term and it 
leads to a bending wave function ~ut (r) which is quite different from the analogs of 
eq. (8) in the case of a 1D harmonic oscillator. The solution of eq. (10) leads to 
eigenfunctions which are given by 

~n,l(r) = Nn,lexp(-?/2) rlLln+l(?), l>10, (12) 

with 
n = quantum number of bending amplitude, n = 0, 1,2,. . . ,  
l = quantum number ofangu_lar motion, l = v, v - 2, v - 4 , . . . ,  - v  

(if l < 0 we use Ill in formula (12)), 
v = 2n + 111 = 0 ,1 ,2 , . . .  overall bending quantum number of the state, 
Nn,t = factor for normalization = (n!/( (n + l)!)3~)1/2 
and 

tl 

Ltn+l(?) = [(n + 1)!] 2 E ( - ? ) m / [ m ! ( n  - m)!(l + m)!] (13) 
m = 0  

is the associated Laguerre polynomial [13,14] of degree (r 2)n. 
The eigenfunctions for Ill > 0 all have the property of being zero when r is zero. 

The explicit form of ~u(r) and its behavior at r = 0, for all l, depends on the represen- 
tation of the volume element used explicitly or implicitly for the integration of the 
Schrrdinger equation. This choice is discussed in detail below in section 2.4. 

The energy eigenvalue of state v is 

gv = hw(v+ 1) = hw(2n + I11 + 1), (14) 

which stipulates that the state v is (v + 1)-fold degenerate in the case of a harmonic 
potential [15], since we can combine (v + 1) different values of 2n and l which yield 
the same v and Ev. However, the usual statement "Ev is independent of l" [2] is 
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not  the full truth! It is important  to remember  that  even though the energy, in a first 
approximation,  is described by v, the real quantum numbers  are n and l. In spectro- 
scopy, the quan tum numbers  (v, l) are used in the linear limit, yet the bending 
ampli tude quan tum number  n usually is not. In fig. 2 we have drawn the levels 
v -- 0 , . . . ,  4. I f  we treat  as an example the case v = 4, we have to take into account  
the pair  of  combinat ions (n = 2, l = 0), (n = 1, Ill = 2),  and (n = 0, Ill = 4). I t fo l -  
lows that very different dynamic states o f  a molecule give the same eigenvalue. 

2.3. THE CLASSICAL TRAJECTORIES OF THE LINEAR MOLECULE BENDING 

The classical representation of  the 2D oscillator representing a linear molecule 
bending, mapped  in the oscillator space of  qx and qy, takes the form of  the ellipses 
shown in fig. 4. This figure shows the classical trajectories of  the oscillator corre- 
sponding to various combinations of  l and n possible for v = 4, in a classical pic- 
ture. I f  l = v, the trajectories in fig. 4 are circles. There is thus no bending motion,  
or change in r. The mot ion  of  the molecule is actually a pure rotat ion of  the plane of  
the molecule about  the z axis. 

/ ~  Ep°'t 

L-O. 2. 4 

.-1. L-3 

). L-2 

q x  

Fig. 2. The 2D isotropic harmonic oscillator: model PES for the bending vibration of a linear mole- 
cule. The outer wall is opened for better insight. 
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Fig. 3. The effective potential V~fr of a typical triatomic molecule for I # 0 and its component parts, 
2 the purely bending function r 2, and the angular contribution l / r  2 in the case of /=  1. 

The corresponding movement  of  a triatomic molecule in the space of fig. 1 is 
sketched in fig. 5, in two snapshots at different times. This apparently simple con- 
clusion is represented incorrectly in established texts. There are basic errors in 
Goldstein's representation [16], and an incorrect implicit phase in Atkins'  figure 
[17]. The atoms follow a path around the axis of  the least moment  of  inertia, and the 
circles representing the trajectories in the case of  pure rotat ion are more  or less flat- 
tened into ellipses by the amplitude of the radial bending coordinate [18]. The 
ellipses maintain a fixed ratio of major to minor  axes in both pictures. The relative 
contributions of the angular energy and of the bending amplitude energy deter- 
mines the difference between the major  and minor axes. I f / =  0 then a pure bending 
vibration takes place, and the ellipse degenerates into a trajectory along a straight 
line passing through the linear configuration. If  the kinetic energy is entirely centri- 
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Fig. 4. Classical picture of the trajectories of combined bending-angular  movement  in a l inear mole- 
cule in the excited degenerate vibrational state with v = 4. The straight arrow through ~ the origin 
depicts a pure bending vibrat ion (n = 2, l = 0), the ellipse a combined bending-rotat ion mot ion 

(n = 1, l = 2), and the circle a pure rotat ion (n = 0, l = 4). 

Fig. 5. Classical bending and rotat ion trajectory in the x, y plane of a linear symmetric t r iatomic in a 
direct view. Note that  we can have actually ellipses for n > 0, l < v, no t  only in the perspective view of  

the picture. 
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fugal energy, that is when I = v, the trajectory is a circle equivalent to a pure rota- 
tion o f  the molecule. For  intermediate values of  l the figure will be an ellipse lying 
between these two limiting extremes. 

2.4. THE VOLUME ELEMENT FOR THE INTEGRATION OF THE SCHRt3DINGER 
EQUATION 

The wave functions and their graphical representation depend in an impor tant  
manner  on the (2D) volume element defined for the integration over the wave func- 
tions [19]. The planar polar  coordinates that  are so suitable for setting up the 
wave functions and carrying out quantitative calculations have the proper ty  o f  
being curvilinear in the qx, qy plane and show special behavior at r = 0. Whereas  
we would write the probabili ty distribution in Cartesian coordinates as 
I~U(qx, qy)12dqxdqy, we must write it in polar coordinates as I~,(r, ¢)[2rdrd¢. The ¢ 
contr ibut ion in the square of  the wave function, [ exp(il¢)[ 2, is equal to one for all 
values of  ¢, and d e  is constant  over ¢. However,  rdr is not  constant  over the range 
o f t :  the area of  every annular  element a round the point r = 0 becomes greater  as r 
increases. This is shown in fig. 6, where the Cartesian coordinate perspective and 
the polar  coordinate  perspective are both superimposed on a PES. When  the quan- 
tity 

Fig. 6. Model PES drawn with two grids, one defined by Cartesian coordinates qx and qy and one 
defined by the corresponding polar coordinates. The radial coordinate is c~, and the coordinate of 
rotation of the figure is q~. The difference shows up in the behavior of the volume elements derived 

from the two grids. 
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J~(r,  4)12rdr = Iv/r~(r, d~)12dr = Iwr(r)12dr 
is plotted against the linear r axis, then its amplitude goes to zero at r = 0, even 
for l = 0. This ~'r(r) on the right side is the wave function used, and obtained 
numerically,  th roughout  the theory of  rigid and nonrigid bender Hamil tonians  
[5,6]. Since the volume element at r = 0 has zero area, it can be legitimately argued 
that  the probabil i ty (even for a " l inear"  molecule) of  finding the molecule in the 
volume element corresponding to the linear configuration, 2n~r at r = 0 ,  is actually 
zero. Fur thermore ,  in the quantum-mechanical  picture we cannot  discuss the prob- 
ability of  the molecule "passing th rough"  any given configuration, since the con- 
cept of  a sequential t rajectory has been left behind with classical mechanics.  In 
order  to make  this change in perspective less abrupt,  we can divide out  the factor  r, 
and look at the amplitude of  I~,(r)l 2 = I~ , , ( r ) /vql  2 as a function of  r. We then 
obtain the probabil i ty distribution corresponding to the "Car tes ian  perspective" 
shown in fig. 6 and implicit in some other studies [20]. The two wave functions, 
~Ur (r) and ~u(r), are shown in fig. 7 for a harmonic  potential [6,21,22]. 

( V / h c ) / c =  -1 HARNONIC POTENTIAL 

1500 

= 

' ~ v - 4  L - O  

.... V i 3  L " t  

V ' Z  L - O  

I im  

v - O  L - O  

1 . 0 0  0 . 5 0  O. O0 O. 50 1. O0 

f / rmalmn ~ I raaian 

Fig. 7. Wave functions in a parabolic model potential ar 2 with coefficient a = 800 cm -1 , giving a 
1D-resum6 of the problem of the 2D isotropic oscillator: (left) ~v,(r) for which the value of the func- 

tion at r = 0 is always zero; (fight) wave functions ~(r) = ~vr(r)/vq. 
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The two-dimensional diagrams of wave functions in this presentation show con- 
sistently the wave function ~u(r). However, we should not lose sight of the fact 
that only one parameter, r, contains information about the restoring force, and 
that the probability density, since it is the square of the complex wave function, can- 
not depend on ~b. Thus, for quantitative calculations of observable quantities the 
wave function ~r(r) and its volume element dr are entirely appropriate. 

2.5. THE WAVE FUNCTIONS 

From this point we will maintain the quantum-mechanical perspective. In fig. 8 
we see the real part of the bending wave functions ofeq. (12) in a 2D harmonic bend- 
ing potential for v = 0 and v t = 4 °, 42, and 44. The wave functions for l = 0 have 
full rotational symmetry about the center. But for quantum numbers l = 2 or 4, we 
obtain an influence of l in the form of a rotational variation around the center. 
The wave seems to oscillate about the center, which itself is a forbidden point; as 
noted above, all eigenfunctions for Ill >0  are zero for r = 0. This means that the 
probability of the molecule being found in the linear configuration is zero [24]. Lin- 
ear molecules with l > 0 do not carry out a "pure" bending vibration because their 
nuclei orbit about the axis of linearity. The effective potential contains an angular 
momentum barrier at linearity, which means that the probability density is only sig- 
nificant for a centrifugally bent configuration, represented classically in figs. 4 
and 5. 

There is a difficulty in visualizing the dynamics of the molecule that lies in the 
different mathematical language of description in quantum mechanics and classi- 
cal mechanics: for example, pure rotation described classically to be on a circle of 
fixed radius r in the qxqe plane must be expressed in quantum mechanics by a wave 
function g/0,t, (n = 0, l = v) which gives a probability distribution I ,0,tl 2 over an 
extended range of radii r. Indeed, rather than visualizing the dynamics, in the sense 
of following a trajectory, we must learn to visualize the probability density. 

Similarly, a pure 1D, straight classical trajectory of the vibration v = 2n, l = 0, 
along a fixed ff direction is in the quantum-mechanical picture an intrinsically 2D 
vibration, where the bending wave function ~'n,0 is centrally symmetrical and thus 
distributed uniformly over all values of ft. Described in terms of Cartesian displace- 
ments, both of the coordinate directions, qx and qy, are equally excited with quan- 
tum number n, and with the same phase. Thus, because we have a 2D isotropy, for 
such states only even values of v are possible. In the case l ¢ 0 with any value of n 
we see the variable ff as a cyclic variable. However, the value of~b and thus the wob- 
bles in amplitude around the linear configuration due to the factor exp(il¢) in ~n,l 
are ultimately ignorable in an isolated molecule, since the probability density distri- 
bution is given by the square of the wave function over the range of a rotation 
0 < ~b < 2n. Thus, the classical 2D problem in (r, ~) transforms to a 2D wave func- 
tion but this reduces to a 1D representation of the probability distribution along 
the bending coordinate r. The angle ~ is an Euler angle, but the above discussion 
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V=4 
L=4 

Fig. 8. Real  part  of  the wave functions for v = 0 and v = 4 t of  a linear molecule with I = 0, 2, 4. The 
radial  coordinate  is a ,  and the coordinate  of  rotat ion of  the figure is ¢. The plots are made  using proce- 

dures ofref .  [23]. 

shows that in a liner molecule, it corresponds to an arbitrary phase factor [25]. 
This phase information will only play a role in observable quantities when the iso- 
tropy is perturbed, as in collisional processes. 

The physical meaning of the wobbles in amplitude of the real part, for example, 
of the wave functions with l > 0 in fig. 8, is the following: the number of nodes 
between 0 and ~ gives the quantum number l. This l has its origin in a derivative of 
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the wave function with respect to ~b, which represents the anguAar momentum 
operator, -ih0/0~b = (qxPy - qypx), so that Iti is the angular momentum eigenva- 
lue. Thus, even though the probability distribution is uniform in ~b, the rotational 
excitation is described by the oscillations of the wave function which, when the time 
coordinate t is added, are seen to rotate around the center. 

Any departure from the harmonic approximation results in a lifting of the degen- 
eracy of states for a given v which display such different forms of behavior. 
Indeed, even for a purely harmonic PES, a slight lifting of the degeneracy results 
from the spatial extent of a real molecule when the curvilinear coordinate a is used 
and the angle dependence of the reduced mass is not neglected; i.e., when a rigor- 
ous representation of the kinetic energy of a real molecule is employed [21 ]. (In the 
above derivation, as in all introductory treatments of molecular vibrations, we 
have approximated the curvilinear bending vibration by rectilinear normal coordi- 
nates qi with a constant reduced mass.) In a model molecule with the masses and 
internuclear distances of HCNO, in a parabolic potential like in fig. 7 and treated 
as a rigid bender with a curvilinear angular coordinate for the HCN-bending vibra- 
tion, there results for v = 4 a downward shift of energy with increasing I, such 
that one finds a difference of 5 cm -1 between the lowest state (n = 0, l = 4) and the 
state (n = 2, l = 0) in a harmonic potential aa 2 with a = 800 cm -1, i.e. a difference 
of 0.6% of one vibrational quantum. 

When the rotational energy, the last term in eq. (1), is also considered, there is a 
twofold degeneracy of each level with l > 0 which is lifted by so-called/-type dou- 
bling and resonance [2,26]. If we trace the ladder of end-over-end rotational states, 
with quantum numbers J >1 l, we find splittings and shifts of the levels. Classically, 
we can distinguish between different directions of vibrational angular momentum 
relative to the end-over-end rotational angular momentum. The quantum-mechan- 
ical waves are characterized by different parities for the two corresponding nearly 
degenerated states. The resulting interactions, however, are much smaller than the 
effects we are discussing and are mentioned here only for completness. 

3. The linear triatomic molecule  as anharmonic  oscil lator 

We move now to a more realistic potential energy curve V(r) or V(a)  than the 
purely harmonic potential in eqs. (3)-(11), for the bending of a triatomic molecule. 
In general, for real linear molecules, two cases are important. The first is a poten- 
tial whose outer wall is less steep than a parabola. In the second case the potential 
well is steeper. 

In the general case of an arbitrary bending potential V(a) there is no explicit ana- 
lytic solution. Therefore we must use numerical approximations. The main point 
of interest will be seen to be the removal of the degeneracy of Ev in (n, l) found in eq. 
(14). 
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Case ( i) : V( a) less steep than a 2 
An example of an anharmonic potential is the Gaussian potential function 

Va,h(a) = D[I - exp(-ba2)] .  (15) 

The most extreme form of this type of potential is found in the case of an interac- 
tion of the bending mode with a weak stretching mode and describes van der 
Waals-molecules [14]. In a more moderate form it is also found in the largely ioni- 
cally bound alkali hydroxides, KOH [27], RbOH and CsOH. Near  the equilibrium 
position the potential is quadratic and symmetric, and can be approximated as 
Dba 2, while at larger values of a the function opens and asymptotically approaches 
either a dissociation limit, D, similar to that of a Morse potential, or a barrier to 
isomerization and internal rotation: The molecule 1-2-3 in fig. 1 becomes, as a 
approaches 90 °, molecule 2-3-1, which should be then represented by another 
potential function, but of a similar form. We retain here the angular coordinate a in 
order to treat the more extreme cases, where a is not infinitesimal. We transform 
a using 2Db = A as a force constant so that with a new coordinate p in place of a we 
have 

p2= ~ / . t ~ 2 / h .  (16) 

We can then define 

7 = h[b/(ZDu)] 1/2 and w = (2Db/l~)1/2/2~, (17) 

and eq. (10) becomes 

-ff-~-~ pop p2 [1 -exp(--yp2)] + ~  ~ul(p) = 0 .  (18) 

A perturbation approach works well if the difference between the potential of 
eq. (15) and the harmonic oscillator potential DboL 2 is small, as is the case with 
small 7 where D >> b. Then we replace the potential term of eq. (15) with 

Van(P) = p2 _ (p2 -~1[1 -  exp(_Tp2)]) = Vharm(p)- A V ( p )  , (19) 

and use the term pZ in the formulation of eq. (10) for exact basis eigenfunctions 
and eigenvalues. The following notation is used: 

Hharm~Unt(p ) = E.~'.t(p ) (of. eq. (10)), 
anh anh (p) I-Ia~Vnt ( P ) =  , (20) 

where the H's  are operators, ~u,j and ~t~ h are eigenfunctions, and E~, e,t are eigen- 
values of the vth eigenfunctions of the harmonic and anharmonic Hamiltonian 
operators, respectively. The anharmonic eigenfuxlctions ~ h  can be expanded i n  
terms of the complete set of unperturbed harmonic eigenfunctions gnl(P)" Addi- 
tionally, one assumes that the eigenvalues enl can be expanded in terms of a conver- 
ging series of perturbation corrections to the unperturbed (zeroth-order) energy: 



274 w. Quapp, B.P. Winnewisser / Bending of triatomics 

,~(1) ~(2) 
~n! = En/ + ~nl + ~n/ + . . . .  (21) 

The expansion o f  eq. (21) can be extended to obtain the desired degree of  accuracy 
of  the eigenvalues c,t. 

The resulting eigenvalues show the expected removal of  degeneracy in the form 
of  an increase in energy with l for a given v = (2n + I). In the extreme case of  a 
"shal low well" with D = 1000 cm -1 and b -- 1 in eq. (15), shown in fig. 9, the split- 
ting of  these energy levels for a given v is substantial.  

Case  ( i i )  : The linear t r ia tomic  molecule  as quart ic  anharmonic  osci l lator  

We now want  to s tudy anharmonici ty  that  tends in the direction of  a "h inge"  
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Fig. 9. 1D cut through the uniquely defined range of a Gaussian energy well with 
D = 1000 cm -1 , b = 1, and energy levels (v, l) given by perturbation theory. The calculated values are 

from Lieb et al. [14]. 
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potential [28,29] which corresponds to a potential wall representing the repulsion 
of the two outer atoms when they approach each other at large bending angles. This 
can be described in general by a potential in a steeper than quadratic, given by 

V ( a )  = a a  2 + bo~ 4 + . . .  with a ,b , . . .  >i0. (22) 

Because of symmetry, any polynomial representation of V contains even order 
terms only. So long as the anharmonic contribution is small, it is usually sufficient 
to consider only the quartic term, in addition to the dominant quadratic term. In 
this case, we can, as before, approximate the motion with the linearized coordinate 
r, so that we have 

V(r )  = ar  2 + br  4 . (23) 

The continuity of mathematics and nature require that there exist eigenvalues 
E , ( a ,  b) for the potential (23) which are related by 

lim Ev(a ,  b) = Ev(a ,  O) (24) 
b ~ 0  

with the eigenvalues E~(a, O) = hw(v  + 1) of the harmonic oscillator (see eq. (14)). 
This is indeed true [30]. But the case is more complicated than it seems at first 
glance. Mathematically, we observe that E~ (1, b) as a complex function of b is not 
analytic at b = 0 [30]. This implies that E~(1, b) cannot have a convergent Taylor 
series, which represents it in any neighborhood of b = 0. Since the Taylor series is 
the basic feature of a perturbation approach, this means that our usual perturba- 
tion methods break down. That does not prevent the calculation of Taylor coeffi- 
cients, and also does not eliminate the possibility that the resulting formal Taylor 
series converges, but not to the function E~(1,b)! Thus, the physical problem 
requires choosing other mathematical means to obtain convergent and realistic 
approximations. The WKB approximation has been tried [28]. The Pad+ diagonal 
approximants also converge better than the Taylor series. There are papers dealing 
with this problem from a mathematical point of view [31]. 

Note that in the pure quartic case r 4 we still can obtain an analytical expression 
for the classical turning points by complete elliptic integrals [32], which is not possi- 
ble in the general case r". Only for some special combinations of the constants 
a, b, and c in 

V(r )  = ar 2 + br 4 + cr 6 (25) 

do quasi-polynomial solutions still exist [33]. 
In spite of the mathematical problems outlined here, it has been conventional 

practice when b << a to try to understand the shift in the/-levels due to anharmoni- 
city by the coefficients of the perturbation theory formulas [34]. As mentioned 
above, this can be dangerous. The resulting first correction to the energy is a term in 
12 , 

Evt = hw(v + 1) + g22l 2 , (26) 



276 IV. Quapp, B.P. Winnewisser / Bending of triatomics 

which depends, insofar as we ignore influences of the two stretching modes in a 
rigid bender model, on coefficient b as 

g22 = - b / 2 .  (27) 
Thus, in contrast to the effects of the former potential of eq. (15), for b > 0 we find 
now a downward shift of energy levels as / increases. 

The large majority of linear molecules are well described at low excitation by a 
quadratic potential with only a small anharmonic contribution in one of the two 
categories discussed above. Covalently bonded molecules may be expected to fall 
into the category of case ii, while ionically bonded molecules show anharmonicity 
as in case i. The lifting of the/-degeneracy and its direction are the most obvious 
effects of either form of bending anharmonicity. 

Spectroscopic data in reasonable rigid linear triatomic molecules, including 
covalently bonded species such as HCN [3 5], show that the energy levels usually go 
up with l. In the extended formula [2], including stretching effects, we find 

g22 = -k2222/48 + ~6 ~ k~s22Ws/(4 - 4~2)' (28) 
s~l,3 

where k2222 -- 24b and the ks22 are stretch-bend interaction constants in the expan- 
sion of the potential. Thus (a) either the stretch-bend interaction sum on the right 
hand side wins the competition over the quartic bending anharmonicity, or (b) the 
"Gaussian" limit is of more relevance than the "hinge" limit for these molecules, 
or (c) the observed g22 is dominated by the effect mentioned above, in which the 
degeneracy is lifted by the curvilinear nature and angular dependence of the 
reduced mass of the bending coordinate, or (d) the perturbative approach to the 
quartic potential is questionable. Points (a) and (b) are related, and constitute a 
challenging region of study in molecular physics which leads to the study of highly 
excited states. 

4. The quasilinear case 

The term quasilinear is an empirical distinction meaning that the pattern of the 
energy levels of such a molecule resemble neither those of a linear nor those of a 
bent limiting case. Mathematically, this situation arises when the bending potential 
function is almost flat-bottomed (as with a nearly pure quartic potential), or the 
linear configuration corresponds to a local maximum on the PES (saddle point of 
index 2) [3] which lies near the ground state or the lowest excited vibrational levels, 
as illustrated in the PES which is the framework of fig. 10. 

We represent this case by introducing a hump in the potential well 
V(a, 4) = V(a). The simplest form is again the potential function of eq. (22), but 
with a different restriction on the coefficients: 
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/=1 L=I 

3 L=O 

Fig. 10. Model PES of a quasilinear molecule, characterized by a hump, with real part of the wave 
function for v = 1. The radial coordinate is a, and the coordinate of rotation of the figure is qk 

V ( a )  = a a  2 + b a  4 with a ~<0, b > O. (29) 

This form has been used [36], for example, for describing HCNO and D C N O  [37] 
(see refs. [4,31] for a compilation of other potential forms). Since the bending 
mot ion  is of  large amplitude, we maintain the actual bending angle a as coordinate. 
There is a continuous range of potential functions and dynamic behavior from a 
harmonic  linear molecule to a harmonic bent molecule, covered in the next section. 
In the range of  cases that  we call quasilinear, the lowest vibrational levels are close 
to, and are strongly affected by, the anharmonic bot tom of the potential well. 
Viewed as a 2D function of both a and ~b, this function has a circular minimum, as 
illustrated in the PES which is the framework of fig. 10; it does not depend on ~b. 
Both terms in eq. (29) are significant, indeed the walls of  the potential well are domi- 
nated by the quartic term. A harmonic approximation now loses all usefulness. 
The accidental curvature of the potential function at the minimum bears no direct 
analytical relationship to the vibrational energy intervals. 

As in the linear case, we consider two degrees of freedom: a bending and an angu- 
lar coordinate with the two quantum numbers n and l. But now, the potential func- 
tion does not  have a min imum at the zero of  the bending coordinate: on the 
contrary, it has a saddle point  of  index 2. In the classification ofref. [3] it is a p r o p e r  

S P ,  because it is characterized by the fact that  the two included modes affect the 
same atoms or atomic groups. 

Mathematically,  this case is equivalent to the previous case described by eq. 
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(23), where a ~> 0, with all of  its problems.  Since now the quart ic  term dominates ,  
ra ther  than  the quadrat ic  one, however,  these problems become acute. Spectrosco- 
pically, we generally observe a marked  decrease of  energy levels with increasing l 
for a given v. In this case the leading term in eq. (28) dominates  clearly. Indeed,  for 
a potent ia l  with a significant quart ic contr ibut ion,  the non-applicabi l i ty  of  the per- 
turbat ive t rea tment  shows up in the fact that  the g22 needed to represent  the eigen- 
values is not  a constant ,  but  changes as v increases [37]. 

A classic example is given by SiH3-O-SiH3, if we take it as a th ree -membered  
enti ty with two compac t  terminal  Sill3 groups.  This was actually the first molecule  
for which a quasil inear model  was formula ted  [11,38,39]. The  first three excited 
states, shown in fig. 11 with v = 1,2, and 3, are "pu re"  rota t ional  states in the circu- 
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Fig. 11.1D cut through the bending potential of the quasilinear molecule disiloxane. Included is the 
manifold of experimental energy levels (v, l) [38]. 



IV. Quapp, B.P. Winnewisser / Bending of triatomies 279 

lar minimum well, with [/] = v, n = 0. The excitation of these states is not in the 
coordinate a, although this may be implied by the cross section shown, within the 
"well" below the barrier (SP of index 2), and the system also does not "tunnel" 
through the barrier, but rather spins around the barrier, i.e. in fig. 11 out of the 
plane of the paper. The first excited vibrational state with bending excitation, 
v = 2, l = 0, i.e. n = 1, is already above the barrier. 

In fig. 12, we show rigid bender calculations for another quasilinear species, 
HCNO [21], where the CNO chain was assumed rigidly linear. For this molecule, 
the barrier lies below the ground state but still strongly affects the spectrum. The 
two possible points of view of the wave functions discussed in section 2.4, are illu- 
strated for this molecule. 

5. The bent triatomic molecule 

If we increase the barrier height of the quasilinear potential into the region of 
some thousands of wave numbers (i.e., ..~ 10 times the lowest quantum) and main- 

(Vlhc)Icm- 1 Molecule: HCNO 
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V - 4  L - O  
V - 4  L - 2  
V - 4  L - 4  
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Fig. 12. Wave  functions o f  H C N O  with @ -- 0, calculated for a potential  as in eq. (29) with 
a = -301 .2  cm -1, b = 1973.9 cm- l :  (left) wave functions V~(a) as in section 2.4; (right) wave func- 

tions ~v(a) = gJ,~(a)/x/a. 
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tain the 2D perspective, then the molecule finds no means to overcome the barrier 
to linearity at moderate excitation. The bending mot ion  is restricted to an annular  
region of  the potential surface. The oscillator can, as before, move in two direc- 
tions: defined by x and y or ~ and q~. Here the angle ~b is a clearly defined Euler angle 
and rotational coordinate, since the plane of the atoms 1-2-3 in fig. 1 can now be 
unambiguously determined from the Eckart condition. The azimuthal mot ion  thus 
corresponds now to a rotat ion with the quantum number  K,, the quantum number  
of  angular momen tum about the axis of  least moment  of  inertia of  the slightly 
asymmetric top which the bent molecule presents. This quantum number  correlates 
directly with Ill in the linear and quasilinear cases, and describes pure rotat ion 
around the barrier. The orthogonal,  bending coordinate c~ delineates now a 1D- 
vibration across the well. So we arrive at the model of  a harmonic oscillator (for 
bending) and rigid rotator. The hump can be interpreted as a local symmetry- 
breaking element of  the former C~ potential, and is thus the reason for the applic- 
ability of  all of  the Eckart conditions in the bent case. Since r does not  approach 
zero, no singularity in an effective potential over a "feasible" range of  r emerges, 
the term 12/r 2 is well approximated using the constant value re, and thus, the cou- 
pling between bending and rotat ion in eq. (10) is nearly removed. As implied above 
by the use of  the Eckart conditions, we now have a valid separation of  variables, 
and the two vibrational degrees of freedom with which we started are reduced to a 
1D vibration and one degree of  rotational freedom, as originally expressed in eq. 
(1). The vibrational quantum number n in the basis function Nnt(r) is the number  of  
nodes in r, which corresponds directly to the conventional numbering V(bend) for a 
bent molecule, as shown in fig. 13. The relation between linear and bent molecule 
bending quantum numbers is [18,40] 

V(lin~.r) = 2n + I/I ---- 2V(b~nd) + K (30) 

and it summarizes the continuity in the range of  cases, from linear to bent, 
explored here. 

A correlation between the two limiting cases is exhibited by rovibrational spec- 
tra across the full range ofquasilinearity. A parameter  to quantify molecular quasi- 
linearity through the range where there is no closed expression for the energy 
levels was defined by Yamada  and Winnewisser [41]. It is derived from the spacing 
pat tern of the energy levels (measured or calculated) and is given by 

E(lowest state with K, o r / ,  = 1) - E(v  = l = O) 

3' = E(lowest excited st. with K, or l, = 0) - E(v  = l -- 0) " (31) 

For  a typical (harmonic) linear molecule, such as CO2 for example, we have 
q' = V(0, 11 ,0 ) /V(0 ,2° ,0 )~  1/2. The corresponding levels of  a strongly bent 
molecule, such as SO2, are determined by a rotational constant A and a high bend- 
ing vibrational frequency, so that  3' ~ 0.01. 

Only a few molecular species are found with 7 values far from these two limits. 
Most  molecules are either "l inear" or "bent" ,  and most  bent molecules are found 
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Fig. 13. Model PES of  a bent molecule showing 1D wave functions of excited vibrational states, 
which are pure bending states. The cut through the surface indicated by the heavy line defines the 1D 

potential function. 

to have a high barrier and equilibrium angles aeq in the range of 500-80 °. In these 
bent molecules, if we treat only excitations well below the barrier to linearity, we 
can again approximate the bending potential by a harmonic ansatz, now for a 1D 
potential. An extended mathematical discussion of 1D potential functions is found 
in a recent review [42]. 

On the other hand, if the height of the barrier to linearity of a bent triatomic 
molecule is lower than that of the outer wall of the bending potential (see fig. 13), 
any bent triatomic should show somewhere in its ladder of bending levels a transi- 
tion to quasilinear behavior [40,43,44]. The change in behavior connects the two 
initially distinct degrees of freedom, the rotation about the a axis with rotational 
constant A, and the bending vibration. The rotational constant A in a bent mole- 
cule is defined by the interval between K = 0 and 1. The change to quasilinearity is 
indicated by a very non-linear increase of the intervals defining the corresponding 
rotational constants Av, in the ladder of bending vibrationally excited states v. The 
constants Av change by one or two powers of ten and finally reach the vibrational 
frequency of the degenerate bending mode, in the 2D quasilinear situation. This 
transition is the result of a drastic increase of the 12/r 2 term in eq. (11). One candi- 
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date for this behavior is the intensively studied water molecule H20 [45,46]. We 
cannot, of course, at high excitation, fully neglect the stretching modes. However, a 
highly excited H20 molecule conquers even an energy barrier of about 11000 
cm -1 , and it continues to present riddles to the spectroscopist. 

Occasionally the barrier in triatomic bent molecules has been described as an 
"inversion" barrier [47]. Inversion is generally accepted as meaning a distortion to 
an equivalent configuration that not only represents an inversion of coordinates 
but, more important, cannot be reached by a rotational operation, and which there- 
fore introduces a doubling of all levels. In this sense there is no inversion in a tria- 
tomic molecule. 

The T-shaped van der Waals molecules such as At-N2 [48] present the phenom- 
enon of internal rotation of a strongly bound pair relative to the third atom. In 
such a case the barrier at the linear structure a = 0 has the same height as the outer 
wall, and our picture defined in the coordinates (a, ~b) becomes inadequate. The 
outer threshold in figs. 9, 10, or 13 would correspond to the "next" linear structure 
at a --- 2n, and the whole extent of the outer wall would represent one and the 
same structure of the molecule. An internal rotation of the N2 group could go in 
any direction straight across the outer wall of this figure, to return on the opposite 
side. Thus, our mode of visualization is not appropriate for such species. The 
more suitable coordinates are the distance between the loosely-bound atom and the 
center of mass of the strongly bound pair and the angle between this distance vec- 
tor and the axis of the strongly bound pair [48,49]. 

7. Out look  

Already in the simple cases of nonlinear triatomic molecules we find a combina- 
tion of different singular points of the 2D isotropic PES well - namely a proper 
saddle point of index 2 and a fiat ring. Such PES landscapes determine the spectro- 
scopy of the corresponding molecules. Together with a "weighting" due to the 
kinetic energy, they give us a classification in linear, quasilinear, and bent mole- 
cules. 

If we imagine a linear triatomic group attached to a larger molecule structure, 
we find a distortion of the 2D PES isotropy, so that the 2D presentation becomes 
even more necessary. The real molecules HCNO [50] and HNCO exhibit a twofold 
symmetry of the quasilinear HXY group against the XYZ bending. The rotational 
symmetry of each bending mode is distorted from the cylindrical symmetry of all 
the cases discussed above to an elliptical, and thus twofold, symmetry by a displace- 
ment of the bending coordinate at the other end of the molecule. The lifting of 
degeneracy in Renner-Teller interactions is an analogous situation. A treatment of 
a twofold symmetric potential goes back to Gamier  [51], which is still a separable 
and integrable potential, and which is the first stage of a hierarchy of more compli- 
cated potentials [52]. 
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S 

Fig. 14. Model PES with a minimum path around a saddle point of index 2 which has a three-fold rota- 
tional symmetry. This minimum path is now not flat, and the PES depends explicitly on ~b. The M 

are minima, and the S are ordinary saddle points. 

The next category of distortion is illustrated by the case of CH3OH [53], where 
the CH3-umbrella imposes a threefold symmetry on the bending potential function 
of the COH group. As in the case of three-atomic species, there is a transition 
from a symmetric top with a 3-fold axis to an asymmetric top such as CH3OH. For 
this example we redefine our molecule-fixed coordinates. We fix the z axis along 
the CO bond, and the x axis in the OCH plane of one of the hydrogens in the CH3 
group. The PES for rotation of the OH group around the z axis then has the form illu- 
strated in the model potential of fig. 14. With this choice of axes, the x axis coincides 
with one of the saddle points S. Also depicted are two of the three minima M. 

SiH3NCO, for example, has a quasilinear SiNC bending mode and indications 
of a weak 3-fold barrier have been obtained [19,54]. The topography rapidly 
becomes more complex. 
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